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Abstract—The problem of predicting gene locations in newly sequenced DNA is well known but still
far from being successfully resolved. A novel approach to the problem based on the frame dependent
(non-homogeneous) Markov chain models of protein-coding regions was previously suggested. This
approach is, apparently, one of the most powerful “search by content” imethods. The initial idea of the
method ‘combines the specific Markov models of coding and non-coding region together with Bayes’
decision making function and allows easy generalization for employing of higher order Markov chain
models. Another generalization which is described in this article allows the analysis of both DNA strands
simultaneously. Currently known gene searching methods perform the analysis of the two DNA strands
in turn, one after another. In doing this all the known methods fail in the sense that they generate false
(artifactual) prediction signals for the given strand when the real coding region is located on the
complementary DNA strand. This common drawback is avoided by employing the Bayesian algorithm

which uses an additional non-homogeneous Markov chain model of the

“shadow” of the coding

region—the sequence which is complementary to the protein-coding sequence.

INTRODUCTION

Large-scale. DNA sequencing calls for fast and
efficient gene recognition methods since the search for
new genes i§ at the top of the genome sequencing
project prioritiecs. A number of gene recognition
methods have been suggested and implemented on
different size computers as well as in networks
(Fickett, 1982; Staden, 1984; Gribskov et al., 1984;
Almagor, 1985; Claverie & Bougueleret, 1986;
Fichant & Gautier, 1987; Fields & Soderlung, 1990;
Konopka & Owens, 1990; Uberbacher & Mural,
1991; Guigo et al, 1992; see other references in
Stormo, 1987; Gelfand, 1990). Nevertheless, there is
sill a clear difference between the accuracy of the
existing methods and the needs of biologists.
Recently, we have improved the method suggested
by Borodovsky et al. (1986b) and have shown that
the predictive accuracy of this method for fourth-
ordér Markov chain models of coding and non-
coding regions :approaches a 10.0% false negative
and 25.2% false positive rate for a control set con-
sisting of 96 bp fragments of Escherichia coli DNA
(Borodovsky ‘& MclIninch, 1993). Actually, such a
test using short isolated fragments should be a rigid
assay since in practice the average coding region has
a larger size and the context information available
from analysis of flanking regions increases the total

* The preliminary version of this work was presented during
the Second International Workshop of Open Prob-
lems. in Computational Molecular Biology, Telluride
Summer Research Center, Telluride, Colo, 19 July-2
August, 1992,
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accuracy of the prediction of the protein-coding
region.

The current paper is devoted to further improve-
ment of the Markov chain/Bayes method and making
it applicable to the common case of searching for
genes in newly sequenced DNA. In this case the
DNA sequence is still absolutely symmetrical from
the point of view of its possible functional meaning
and one needs to search for genes along both DNA
strands. None of the existing methods was developed
for the analysis of two strands simultaneously. The
usual idea ‘was to apply the method developed for
one strand analysis twice: once for the direct strand
and in a second time for the complementary strand
(Fickett,‘ 1982; Gribskov et al., 1984; Uberbacher &
Mural, 1991). Sometimes this idea is implemented
by sequence analysis software developers even with-
out the authors’ participation. It has been observed
by many who applied these methods that strong
false signals have appeared, for instance, on the panel
characterizing the direct DNA strand, apparently,
having been induced by a true coding region located
on the complementary strand and vice versa (see
Fig. 1, Table 1 and comments in the next section).
Predictions of the coding regions that are made on
the basis of this vague picture can be relatively easily
done in the prokaryotic case when the length of open
reading frame (ORF) which corresponds to the true
coding region is as a rule much larger than the
competitive one on the complementary strand. How-
ever, a fast search for gene locations, which is the
most important task during high speed sequencing,
has become quite difficult even in the prokaryotic
case, to say nothing about eukaryotes.
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Table 1. Grail recognition system output for sequence ECARAC (>ECARAC, length = 1246;
: potential exons are listed in the following)

. Strand Open reading
Position Strand* probability - Frame Quality frame
-821-909 s F - 053 3 " Good 642-909
681-771 T 0.71 2 Excellent 653-830
498-641 T 0.64 3 Excellent 498642
221-291 . T 0.61 3 Excellent 102-306
1111-1146 f 0.54 3 Marginal 204-1146

The ORF (204-1146) contaitiing a true coding region is listed here as marginal quality, which is
certainly less promising than the other four suggestéd choices. Only additional analysis of the ORF
lengths can give a strong indication in favor of the true coding region.

*f, Forward; r, reverse.
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° The Bayes™ formalism employed in' the our method
(Borodovsky et al., 1986b) is very flexible and allows
one! to" éasily ‘eénlarge -the ‘number of possible situ-
ations ' whichi-*should - be: distinguished -from - one
anothér: We néed to incotporate into the Common
Bayes algorithm“the additionial outcomes: which
appear in the simultaneous mode of analysis when the

protein-coding:region:is-located on the strand comp- -

lementary to the one being analyzed. This is possible
using additional non-homogeneous Markov chain
models of a: “shadow” of the coding region. Thus,
in what follows, we describe the new version of the
method which-completely avoids the aforementioned
drawback of generating false predictions in the region
of a gene shadow.
ALGORITHM

Markov chain models

The previous papers (Borodovsky et al., 1986a;
Borodovsky & Mclninch, 1993) contain a detailed
explanation of constructing non-homogeneous
(frame-dependent) Markov chain models of protein-
coding DNA sequences and their utilization for
Bayesian gene recognition algorithms. Figure 2
shows an illustration of the application of this
“one-strand-only” non-homogeneous Markov chain
method. )

Let us consider the ECARAC sequence (name
given in EMBL notation). This sequence contains
a protéin-coding subsequence (270-1145) which en-
codes a low expression regulatory protein araC. The
protein araC controls initiation and transcription of
structural genes involved in the transport and metab-
olism of-L-arabinose (araBAD operon) and in ad-
dition controls its own synthesis (Sancar et al., 1980).

We have analyzed the sequence ECARAC using
TestCode (Fickett, 1982) and GRAIL (Uberbacher &
Mural, 1991) methods. The TestCode indicator func-
tion (Fig. 1) has shown a strong signal for the
complementary sequence (bottom panel). The
GRAIL coding recognition module also provides
(Table 1, only the GRAIL output summary is pre-
sented) quite strong indications for the existence of
several coding regions on the complementary strand

as well. Note that the TestCode function is used as a -

component of GRAIL discrimination criteria. These
examples are given not for the purpose of general
critique of the methods mentioned. By the way, the

GRAIL does not claim responsibility for the predic-

tions for species other than human. We would just

like to make clear some difficulties which can be
caused by the shadows of the coding regions.

The sithilar false signals-appear when -GRAIL is
applied to human DNA or methods described by
Staden (1984)-or Gribskov et al. (1984) are used for
E:~coli, for instance. The same is true when the
“one-strand-only” Markov chain/Bayes method is
applied (see the result below for ECARAC).

Let us now consider the E. coli sequence ECRECA.
The ECRECA subsequence (238, 1296) encodes the
protein recA which is involved in important cellular
functions such as cell division, recombination-repair,
mutagenesis and phage-induction. In non-induced
cells recA protein is made only in small quantities,
whereas in induced cells the gene is as actively
transcribed as ribosomal RNA gene (Miada et al.,
1980). :

The result of analysis done for sequence ECRECA
by previously suggested one-strand-only Markov
chain/Bayes method (Borodovsky et al., 1986b) is
presented in Fig. 2 in the way similar to Fig. 1, i.e.
in the form of indicator function charts. Second-
order Markov chain models of coding and non-
coding regions were used. The size of the moving
window is equal to 96 bp and step of the consequent
moving is equal to 6 bp. The coding region is ident-
ified in the first reading frame (defined by the first
nucleotide of the sequence ECRECA).

There is a clearly evident false signal on the bottom
panel which corresponds to the complémentary first
reading frame. This artifact appears when the “one-
strand-only” algorithm is applied to the sequence
complementary to ECRECA and when the shadow of
the true coding region is processed. In the previous
paper (Borodovsky & MclIninch, 1993) one can find
more examples of the utilization of the “one-strand-
only” analysis algorithm. It was shown that the
intensity of the artificial signals decreases when
higher order Markov chain models are employed; the
decrease in the false signal intensity is also observed
in the analysis of the DNA sequences coding for
genes with low expressivity. Note, that the pattern of
codon usage of highly expressible genes is strongly
shifted to the limited number of so-called optimal
codons in comparison with genes with the low expres-
sivity (see references in Gouy & Gautier, 1982).

Figure 3 shows the result of analysis done for the
sequence ECARAC. Fifth-order Markov chain
models of coding and non-coding regions are used
here. The moving window size and the step are the
same as in Fig. 2. It can be seen that the coding region

Fig. 1 (opposite). Gene prediction plots obtained by the TestCode method (GCG package realization).
The diamonds and vertical bars shown above the graphs designate start codons and stop codons
respectively. The graph in-the top-panel indicates:the coding: region for the direct DNA sequence
ECARAC. The résult could-be interpreted as prediction of two ‘coding’regions in between three other
régions’ which-are characterized as “‘no-opinion” (since the corresponding parts of the graph lay in
intérmediate zone). The graph in the bottom panel shows good prediction for the coding region located
on the complemeéntary DNA strand. The true coding region has been determined to be on the direct strand
: ‘ " (Sancar et al;, 1980). :
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is’ identified: in the third reading frame. The false recA, and we are using higher order Markov chain
signals.that -appear- in-the third reading frame of models. : _

the ‘complementary. panels- are not so intense as . The explanation of false phenomenon comes from
in case shown in Fig: 2. Actually, it is quite explain- a well known. observation (Shepherd, 1981) that
able - from. -what : was -mentioned previously since coding regions have an excess of RNY type codons
the araC: gene has the:lower expression level than (R, purine; Y, pyrimidine). Since this formula s

amber:illecreca_2_96, Order 2, Window 96:nuc, Step 12 nuc
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Flg 2 Indlcatlon of protem-codmg reglons by. one-strand-only Markov chain/Bayes method (sequence

ECRECA). Six. charts represent - protein-coding region indicator-functions calculated -for ECRECA

sequence as-described in the Algorithm section of the text. Second-order Markov chain models of coding

and non-coding region have been used. The three top panels refer to the 1st, 2nd; and 3rd frames of reading

triplets in.the direct DNA: sequence. The-three bottom: panels refer to the 1st; 2nd and 3rd frames of

reading triplets in the reverse (complementary) DNA sequence.
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self:conmiplementdry:one:can expect to find a number
of RN type triplets.in the sequence fragment comp--
lémentary to:the real:gene: These triplets fall into the
same-reading -frame:and - eventually . produce - the
falsé>signals.:The: above mentioned tendency of. the
increasing ‘of theartifactual noise: for ‘E.. coli highly:
expressed genes cotrésponds to the fact that the RNY
formula. preferably-describes optimal codons. On the
other hand, thisthreg letter pattern will mostly affect:
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algorithms that use:lower than third-order Markov
* chain models.

- Now the modified procedure w11] be described for
the case. of first-order Markov chain models. The
derivation of higher order models and their use in the
algorithm is a rather straightforward generalization
of-the procedure given below.

The model for -non-coding -DNA- sequence - is
+ragt a- liomogeneous™ - Markov ;chain

seq:ecarac_5_96, Order 5, Window 96 nuc, Step 12 nuc -

0:5f

b L REI

0.0 —_— .
C10p o T e : .

staE e - el —11 ¥ 1 ’

TO5F

Direct Sequénce .-

0.0

1.0r

R

0.0 -
Crop

0.0k

1.0f" "

05 -| 1 r J ot

Compl,ementja\ry Sequence

—t— ¢

1.07

o5

0.0
- 48

618: 903 1188

Nucleotide Position

Flg ‘37 Indication of protem-codlng regions by’ one—strand—only Markov cham/Bayes method (sequence
ECARAC) Fxfth order Markov chain models of coding and non-codmg Tegion have been used (see
‘caption to Fig. 3).
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(Borodovsky: et al., 1986a).. Numerical values of the
parameters of .the first-order model (initial prob-
ability- vector PN, and :transition matrix PN). are
derived from:-the:counts of mono-, and dinucleotides
N(@):and: NGGj), i;j=1,2, 3,4 (numbers are used
instead ‘of: letters. T;' C, A, G) calculated from the
training -set’ of non-coding' DNA sequences. The
elementsiof the transition-matrix PN are assumed to
be:.equal to. N(ij)/N(i) according to the maximum
likelihood principle (Billingsley, 1961). The value of
the initial probablhty PN,; is taken as the normalized
frequency of the mononucleotide i, i=1,2,3,4.
In a sense the model treats patterns of correlation
between: adjacent - nucleotides as uniformly dis-
tributed along the sequence, although these patterns
could have a-more complicated distribution.

There is a certain concern whether such a
phenomenological Markov chain model, which
generates.a.model DNA sequence moving from left
to right, in some sense violates an a priori symmetry
presumption according to which both rightward
and leftward sequence directions should be equal in
respect-to. the initial training set of DNA sequences.

In fact, a model like this allows one to rigorously
define the probability of an appearance of nucleotide
string “x;, X,, ..., % (where k is the length of the
string)-at any pamcular place in the DNA sequence.
It can be shown that rightward and leftward Markov
models -are equivalent from the point of view of
calculation of string appearance probability.

It was shown that a homogencous Markov
chain model does not give a satisfactory statistical
description of DNA sequence that codes for a protein
(Borodovsky ef al., 1986a; Tavare & Song, 1989;
Kleffe & Borodovsky, 1992). The same papers con-
sidered a non-homogeneous periodic Markov chain
model which describes more precisely the three step
weak petiodicity of a coding sequence.

The: first-order non-homogeneous Markov chain
model of a coding region is defined by three vectors
of initial state probabilities: P1,, P2,, P3,, with the
components Plg, P2y, P3,=1, 2, 3, 4; and three
transition matrices P1, P2, P3, containing elements
Pl P29,P3,,,l_] =1, 2, 3, 4. The definition of these
parameters is made on the basis of the maximum
likelihood principle as well. The training set of coding
sequefices is concatenated into a long sequence of
length - N .with :stop-codons -excluded. Counts of
mono- and dinucleotides N (i) and N(i, j) are divided
into three components depending on a position that
nucleotide 7 occupies in a codon. The new statistics
are designated as N”(i) and N™(i,j) m=1,2,3.
Value of the element P} is assumed to be equal to
N™()/N™(i), value of the initial probability P (i) is
equal to the N™(7)/(N/3).. A similar procedure, count-
ing of & + 1-tuples and k-tuples split into three sub-
sets (according to the position of the first nucleotide
of the k-tuple or k + 1-tuple in the codon) is accom-
plished for the definition of parameters of non-homo-
geneous Markov chain model of the order k.

The non-homogeneous Markov chain model of a
shadow of the coding region is now easy to construct.
Let us reserve letter Q for all similar designations of
parameters that appear for the non-homogeneous
Markov chain model of the shadow of the coding
region: Ql,y, Q2,, Q3,, Q1, Q2, Q3 and so on. One
can operate with the training set of the shadows of true
coding regions or find @ analytically, combining
values of statistics N"(if) and N™(i) which are known
from the true coding sequences training set analysis.

Thus, the main point of the method is that coding
and non-coding regions of a DNA primary structure
are treated as nucleotide subsequences having differ-
ent rules of nucleotide ordering selected by the process
of evolution. These subsequences are formally de-
scribed by Markov stochastic models of different

types.
Protein-coding region recognition

Let us consider a particular nucleotide fragment
“fisfrs -« .o f,” denoted as F (where n is assumed to
be a multiple of 3). The formulae below give a general
idea of the algorithm in the case when the first-order
Markov chain models are used. The value of a
probability that F appears in a non-coding region is
calculated according to the formula:

P(F | NON) = PN,(f;)

*PN(fo 1)) =« PN(f1f,_). (1)

The appearance of F in a coding region can be split
into three mutually exclusive outcomes depending on
in which position of a codon the first nucleotide of the
fragment F happens to fall. The probabilities of these
outcomes can be calculated using the non-homo-
geneous Markov model

P(F| CODy) = P1y(f)) * P15, 1)) * P2(f; | 13)

* P31 )=+ P2(f, | o))
P(F| COD,) = P2(f,) * P2(f;1£,) * P3(£311,)
* P1(fy|fs) * -+ P3(f, £, 1)
P(F| CODy) = P3,(f) * P3(5; 1 £) * P1(f; | 13)
«P2fi1 )« * P11 fii). @

There are three additional outcomes which appear if
F falls into the shadow of the true coding region

Q(F|CODy) = Q1,(f)) * Q151 /) * Q2(£1/2)

*Q3(falf) o x Q2(f, 1 1)
Q(F|COD,) = 02(f1) * Q2| /1) * Q3(£: 112)

QUL S+ % Q3(f 1 £ )
Q(F[COD;) =Q23,(f1) * Q3(5,1/) * Q1(F, 1 1)

*Q2flf)x = QULIL-0) (B

The final step is to define the a posteriori probabil-
ities P(COD,,| F) and Q(COD.,, | F) which character-
ize the coding property of the fragment F being read
in six possible ways. Three components P(COD,,|F)
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m=1,2 3 ‘are’ determmed accordmg to the Bayes
P(F | COoD, )* P(COD ) @

P(COD |F)__'f'w _

T PFICOD;)+ P(COD,)+ 2. O(FCOD) » 0(COD,) + P(FTNON) « P(NON)

*The designation .P(COD;,)) stands for the a priori
probability -of-the <event COD,,, m = 1,2, 3, which
means that any -as yet unspecified fragment F falls
into a coding region (and its first nucleotide is located
in a codon_position defined. by index m). -

The same kind of formula defines probablhtles of
different shadow phases"when the  fragment F is
observed : :

and ‘the sliding step equal to 6 or 12 nucleotides:
The probability values P(COD,|F), Q(COD,,| Fy
i =1,2,3 were calculated for every nucleotide frag-
ment: F found in the window opening and referred to
this fragment’s middle point. The sequence of these
probability values forms the six indicator functions.

-Thus, when the nucleotide sequence is read only
from the one. strand, the gene searching has been

Q(CoD, |F)

O(F | COD,) + (COD,)

®

Z P(F| COD)x P(COD,) + Z Q(F | COD)) x Q(COD;) + P(F| NON) » P(NON)

The designation Q(COD,,,) stands for the a priori

probability of the event COD,,, m =1, 2, 3, that an
as yet unspecified fragment F falls into a coding
region shadow (and that the first nucleotide of F is
located in a codon position defined by index m).
The designation P(NON) stands for the a priori

probability of the event—NON, that an as yet unspe-

cified fragment F falls into a non-coding region. The
natural assumption here is that P(NON)=1/2 and
that P(COD,,)=Q(COD,)=1/12 for m=1,2,3.
Formulae (4)—(5) determine six coding—in-frame a
posteriori probablhtles—for any one given fragment
F of the DNA sequence.

The value

performed simultaneously on the two complcmentary
strands. The graphical output of the algorithm is
designed in the form of six panels on a page (the top
three for:the direct strand and the bottom. three for -
the reverse one). Each panel corresponds to one of six
possibilities of reading subsequent triplets in a DNA
sequence, The vertical axes represent values of the
probability P(COD,,| F) and Q(COD,,| F) while the
horizontal ‘axes represent nucleotide positions -along
a DNA sequence. Positions of translation start and
stop codons are marked by small vertical ticks at the
0.5 level.. Upward ticks denote the position. of the
start. codons ATG and GTG (the tick’s length for
GTG is half that of the ATG one). Downward: ticks

P(F|NON)* P(NON)

P(NON | F) =

Z P(F|COD;) * P(COD )+ Z Q(F| COD,) x Q(COD;) + P(F| NON) x P(NON)’

©)

gives an a posteriori probability of the event that
a given fragment F belongs to non-coding region.
The total —~of =" P(COD;|F) -and - Q(COD,,| F),
m =1,2,3, is designated a P(COD | F). We assume
that P(COD |F)+ P(NON |F)=1 thus, the case
when fragment F is partially codlng and partly
non-coding is not considered.

IMPLEMENTATION

Graphzcal output

The above algorithm was implemented using the
ANSI-C language as a program on an Amiga 3000
and IBM-386 personal computers and on an IBM RX
6000 computer. The training sets of protein-coding

and non-coding regions consisted of 479,589 and-:

245,307 bp respectively. The limited size of the cur-

rent training set did not allow the use of models of -

order higher than five.

The sliding window size and the step size of a
sliding are parameters of the-algorithm. In-our calcu-
lations we used the window sizes: 16, 32 or 48:codons

show' the positions of the translation. termination
triplets TAA, TAG, and TGA. Every start codon gives
an origin to.an open reading frame which is marked
by solid line. Note that the direction of the readinig of
the protein code in the bottom three panels is leftward.

The examples of the above described graphics
are given in Fig. 4 and Fig. 5 for the same E:: coli
sequences ECRECA and ECARAC. The result of
using the second-order algorithm for the ECRECA
sequence analysis is shown in-Fig. 4. It is seen again
that the coding region is identified in the first reading
frame of the direct sequence. No false -signal now
appears in the first reading frame panel of the comp-
lementary sequence. A similar result for the sequence
ECARAC is shown in Fig. 5.

Accuracy of the recognition procedure

Figures 2-5 give just an example of the graphical
output of the method. The statistical evaluation of

* the. quality of the. recognition- procedure has been
.. done by the-estimation.of the average false positive

and false negative rates.
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For this purpose two control sets of E: coli DNA,
coding and non-coding regions being 373,845 and
131,538 bp in size; were considered. Each of these

sequence: sets was “divided .into .a number of non--
overlapping fixed size fragments (the fragment length '

was taken-equal to-48, 96, and 144 base pairs). For
each:fragment the value.of the a posteriori probability
of . its protem-codmg function was calculated by a

P B

particular version of the recognition algorithm. Five
versions of the algorithm were used for calculations
corresponding to different orders of Markov chain
models (from first through fifth). The set of prob-
ability values obtained from the utilization of a given
version of the algorithm can be presented in the form
of a histogram:on the interval (0,1). These data are
represented in tabular form. In Tables 2 and 3 we

Sequences:ecreca_2_96, Order 2, Window 96 nuc, Step 12 nuc

1

. Difect Sequece’

Lool—
> 1.0
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~Fig. 4. Ihdication of protein-coding regions by the both-strand Markov chain/Bayes method (sequence
‘ECRECA). Six charge fepresenting protein-coding region indicator functions obtdifed by second-order
bothi-strand-togethér method (seé caption to Fig. 3).
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. .::Table 2. Distribution of protein-coding probability function in the set of coding fragments

Cumulative histogram value

~ Order 0.0-0.3 0.3-04 0.4-0.5 0.5-0.6 0.6-0.7 0.7-1.0
1: 0.185 - 0.037 0.034 0.037 ~ 0,049 0.659
220 -0.107 0.016 0.014 0.020 0.021 0.822 -
3 0.106 0.011 0.014 .0.018 0.014 0.837
4 0.104 0:.010 0.016 0.013 - 0.017 0.841
5

0:117 0.012 0.013 0.105 0.017 0.825

; Sequences:ecarac_5-96, Order 5. Window 96 nuc. Step 12 nuc
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Fig. 5. Indication of .protein-coding regions by the both-strand-together Markov chain/Bayes method
(sequénce ECARAC). Six -charts -representing protein-coding region indicator functions obtained by
fifth-order both-strand-together method (see legend to.Fig. 3). .
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Table 3. Distribution of protein-coding probability function in. the set of non-coding fragments

-+-w: ‘Cumulative histogram value

Order 0.0-0.3 03-04  04-05 0.5-0.6 0.6-0.7 0.7-1.0
1 0:720 0.033 0.026 0.028 0.021 0.172
2 0.757 0.012 0.013 0.009 0:014 0.196
37 0.764 0.011 0.007 0.013 0.010 0.196
4 0.766 0.010 0.007 0.012 0.007 0.198
5 0.772 0.007 0.015 0.009 0.007 0.190

list the relative frequencies of 4 falling of calculated
probability value into six subintervals which cover
the interval (0,1). '

Table.2 shows the histogram data sets obtained by
the fifth-order version of the recognition algorithm
for 3894 true coding fragments of 96 bp length. Tt is
seen that if the threshold of decision making is set at
a 0.5 level then the rate of false negative predictions
(coding identified -as-a non-coding) is 25.6% for
the algorithm using first-order Markov chains and
this rate decreases to 14.2% for the case when the
fourth-order Markov chain model is used. Another
important parameter: the false positive rate for non-
coding fragments (non-coding identified as coding)
does not change significantly: from 22.1% for the
first-order to 21.7% for the fourth-order method.
This conclusion comes from Table 3 which shows
protein-coding probability values calculated by five
algorithm versions for 1370 non-coding fragments of
96 bp length.

DISCUSSION

The results presented above have shown a reason-
able accuracy of the Bayesian algorithm based on
Markov chain models. This algorithm is able to
reveal the coding DNA strand and true reading frame
where .a gene is located and generate a distinctive
identifying signal.

The elimination of the false signals is a significant
feature of the algorithm. It makes it easier to choose
the best decision when the competitive ORFs appear
in complementary DNA strands (prokaryotic case).
It should help even more in the case of eukaryotic
sequence analysis when supportive information such
as ORF location is less useful. That is why any signal
(true or false) that appears in the course of the
analysis requires the application of additional re-
sources-in order to clarify its-real nature.

The current - version of the algorithm is very
sensitive to the pattern of nucleotide correlations.
To achieve good results the sequence to be analyzed
should be taken from the same statistical population
as the training set is. So, one cannot expect that the
algorithm trained on the E. coli sequence set will be
successfully applied to the sequence taken from the
genome of the other species. For instance, even for
the case of bacteriophage lambda the algorithm
trained. on. E, coli works properly only for the first
21,000 bp.:.It _does. not . produce any satisfactory
results in the late genes regions which, as it is well

known, has a significantly different pattern of

“nucleotide correlations.

One important remark should be made on the
comparison of the accuracy figures that were
determined for one-strand-only version of the
method (mentioned in the Introduction) and both-
strands-together version (Tables 2 and 3). These
figures seem to be close enough. The reason is that
the accuracy ‘of the one-strand-only method was
evaluated on the restricted control sets of coding and
non-coding regions. The shadows of coding regions
were not taken into account, which was quite favor-
able for the one-strand-only method. The current
both-strands-together method is “symmetrical” with
respect to the control set of coding regions and the
control set of the shadows of the coding regions—so
we can use only one of them (set of coding regions).
Consequently, the final level of predictive accuracy
of the both-strands-together method obtained
should be considered as a realistic accuracy par-
ameter. This accuracy level should be expected in the
real-life situation when one cannot eliminate the
potential opportunity of finding the shadow of the
coding region in the new DNA sequence which is
analyzed.

Program availability—The above described method can be
used for the analysis of newly sequenced E. coli DNA
through the Georgia Tech E-mail server. The sequence can
be sent to the program GENMARK which is available at
the E-mail address genmark @ ford. gatech.edu. The output
of the program which is sent back by E-mail includes the list
of ORFs that have been recognized as real coding regions.
The optional PostScript output file gives an opportunity
to obtain the full six frame picture by printing out this
file on a PostScript compatible printer. A version of
GENMARK for human DNA sequences is being developed
at the present time.
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